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Scaling behaviors of branched polymers
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We study the thermodynamic behavior of branched polymers. We first study random walks in order to
clarify the thermodynamic relation between the canonical ensemble and the grand canonical ensemble. We
then show that correlation functions for branched polymers are given by those forf3 theory with a single mass
insertion, not those for thef3 theory themselves. In particular, the two-point function behaves as 1/p4, not as
1/p2, in the scaling region. This behavior is consistent with the fact that the Hausdorff dimension of the
branched polymer is 4. In the appendixes we derive the exact two-point correlation function at finite~but large!
system sizeN, which is consistent with the analysis in the body of the paper.
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I. INTRODUCTION

Branched polymers are the simplest generalization of
random walk, and have been studied extensively~see, for
example, Ref.@1#!. They are of great importance not only
statistical physics but also in particle physics, in particu
for understanding the critical behavior of random surfa
and quantum gravity@2–4#. Our recent interest in branche
polymers arose from our attempt to formulate superstr
theory nonperturbatively. In Ref.@5#, we studied the dynam
ics of a type IIB matrix model in such a framework~see Ref.
@6# and also see Ref.@7# for review!. In our matrix model
approach, the eigenvalues of matrices were interprete
space-time coordinates. In these investigations, we found
system of branched polymers in a simple approximation.
though it is far from the flat four-dimensional manifold
branched polymers share the same~fractal! dimensionality 4
with our space-time coordinates. This might be the first
dication that superstring theory can explain the dimensio
ity of our space-time.

In this paper, we comment on a field theoretic descript
of branched polymers. It is well known that a system
random walks is described by free scalar field theory if th
is no effect of self-avoidance. Similarly, it is widely believe
that a system of branched polymers is described by a sc
field theory with a three-point coupling, that is,f3 scalar
field theory. However, we will show that this is not so b
treating the universal part of the partition function careful
A system of branched polymers without self-avoidance
be exactly solvable by introducing the grand canonical
semble and using the so called Schwinger-Dyson techni
In order to extract the correct largeN limit ( N is the system
size! or the thermodynamic limit, we have to check that t
grand canonical ensemble is dominated by the larger
system. In other words, we have to extract the universal p
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Our claim is that we need a single mass insertion in e
m-point correlation function of thef3 scalar field theory in
order to describem-point correlation functions in branche
polymers. Mass insertion here means a change of a prop
tor in eachm-point function from an ordinary one, 1/p2, to
1/p4. In particular, the two-point function behaves as 1/p4,
not 1/p2. Let us count the number of points which lie withi
distanceR from a fixed point ind (.4) dimensions. In the
random walk, this can be estimated asR2 by using the two-
point function. We obtainR4 for branched polymers by usin
a 1/p4 type propagator. This our findings are consistent w
the claim that branched polymers are four-dimensional fr
tals. A multipoint correlation function is given by a sum o
graphs of the corresponding correlation function forf3 sca-
lar field theory at tree level, with a single mass insertion
each graph.

Our main results were announced in Ref.@9#. In this paper
we would like to give a fuller account of our results b
providing more detailed derivations and explanations. T
organization of this paper is as follows. In Sec. II, we revie
random walks in order to clarify the relation between t
canonical and grand canonical ensemble. In Sec. III, we
vestigate branched polymers. First we define a canonical
semble for a system of branched polymers~Sec. III A!, and
then introduce grand canonical ensembles~Sec. III B!. We
emphasize that the definition of a grand canonical ensem
is not unique. In Sec. III C, we solve Schwinger-Dyson equ
tions for the conventional grand canonical ensemble, and
tain results which correspond to the correlation functions o
scalarf3 theory. In Sec. III D, we consider the thermod
namic limit of the correlation functions, and obtain the co
rect universal behavior of these. In Sec. IV, we give a phy
cal interpretation of why the propagator behaves 1/p4 in
branched polymers. Section V is devoted to conclusions
discussions. We have two appendixes A and B which de
the partition function and the two-point function in the c
nonical ensemble of branched polymers. In Appendix B
derive the two-point correlation function exactly at a fini
system sizeN. The result is consistent with the analysis
Sec. III in the scaling region.
6260 ©2000 The American Physical Society
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II. RANDOM WALKS

In this section, we give a brief introduction to rando
walks in order to clarify the thermodynamic relation betwe
the canonical and grand canonical ensemble. The cano
partition function with the system sizeN is given by

ZN5E )
i 51

N

ddyi )
i 51

N21

f ~yi2yi 11!5V„ f̂ ~0!…N21, ~2.1!

where V is the total volume of the system, andf (x) is a
function assigned to each bond that damps sufficie
quickly at long distances compared to the typical length sc
a0 . f̂ (p) is its Fourier transform:

f̂ ~p!5E ddx eipxf ~x!. ~2.2!

For example, we can takef (x)5exp@2(x/a0)
2/2#.

Correlation functions for densityr(x)5( i 51
N d (d)(x2yi)

can be easily calculated. The one-point function become

^r~x!&N5
1

ZN
E )

i 51

N

ddyi )
i 51

N21

f ~yi2yi 11!(
i 51

N

d (d)~x2yi !

5
N

V
. ~2.3!

The two-point function is defined as

^r~x1!r~x2!&N5
1

ZN
E )

i 51

N

ddyi )
i 51

N21

f ~yi2yi 11!

3(
i 51

N

d (d)~x12yi !(
j 51

N

d (d)~x22yj !,

~2.4!

and its Fourier transformation is given by

ĝN
(2)~p!5E ddx^r~x!r~0!&Ne2 ipx

5
1

ZN
S (

i , j
„ f̂ ~p!…u i 2 j u

„ f̂ ~0!…N2u i 2 j u21D
5

1

V (
i , j

S f̂ ~p!

f̂ ~0!
D u i 2 j u

5
2

V (
s50

N21

„h~p!…s~N2s!2
N

V

5
2N

V~12h~p!!S 12
h~p!@12h~p!N#

N@12h~p!# D2
N

V

5
2N

VH~p! S 12
12e2NH(p)

NH~p! D S 11OS 1

N
,H~p! D D ,

~2.5!

where
cal

ly
le

h~p![ f̂ ~p!/ f̂ ~0!5exp@2~a0p!2/2#, ~2.6!

H~p![12h~p!5~a0p!2/21•••. ~2.7!

We can approximate the two-point function as

ĝN
(2)~p!5

2N

V

1

H~p! S 12
1

NH~p!
1OS 1

@NH~p!#2D D
~2.8!

in the scaling region

1

N
,H~p!!1 ~2.9!

or

N21/2/a0,p!1/a0 . ~2.10!

The scaling region is between the ultraviolet cutoff scalea0
and the infrared scale of the system extent, which is given
j5a0N1/2.

The two-point correlation function is also calculated
the grand canonical ensemble. A conventional grand can
cal partition function is given as

Zk0
5 (

N51

`

k0
NZN5

Vkck0

kc2k0
, ~2.11!

wherek0 is the fugacity, andkc5„ f̂ (0)…21. For later conve-
nience, we first define an unnormalized two-point functi
by

Ĝk0

(2)~p!5 (
N51

`

k0
N(

i , j
„ f̂ ~p!…u i 2 j u

„ f̂ ~0!…N2u i 2 j u21

5
k0

~12k0!2

2

@12k0 f̂ ~p!#
2

k0

@12k0 f̂ ~0!#2

5
k0kc

3

~kc2k0!2

2

@kc2k0h~p!#
2

k0kc
2

~kc2k0!2
.

~2.12!

Hence the normalized two-point function becomes

ĝk0

(2)~p![
Ĝk0

(2)~p!

Zk0

5
1

V@12k0 f̂ ~0!#

2

@12k0 f̂ ~p!#
2

1

V

kc

kc2k0

5
2kc

Vdk

1

@12h~p!#1
dk

kc
h~p!

2
1

V

kc

dk

5
2kc

Vdk

1

H~p!1
dk

kc

S 11OS dk

kc
,H~p! D D , ~2.13!
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where dk5kc2k0. Since ^N&5kc /dk, the correlation
function behaves as that of massive scalar particles

ĝ(2)~p!k0
;

2^N&
V

1

H~p!11/̂ N&
, ~2.14!

and agrees with the result in the canonical ensemble ca
lation. This result gives the correlation lengthj5a0N1/2,
which indicates the Hausdorff dimension of random wa
dH52.

Here we give two different definitions of Hausdorff d
mensions. The first one is defined in terms of the relat
between the system sizeN and the extent of the system. Th
infrared behavior of the above two-point function shows t
the correlation damps rapidly over the length scalej
5a0N1/2. Since the extent of the systemL;j is proportional
to N1/2, the Hausdorff dimension is given bydH

(1)52, where
dH

(1) is defined as

L5a0N1/dH
(1)

. ~2.15!

The second definition is to use the behavior of the correla
function at much shorter length scale than the system
L5j. In d-dimensional coordinate space, the density cor
lation behaves as

g(2)~x!;
exp~2muxu!

uxud22
, ~2.16!

wherem51/j. If uxu!1/m, the mass term can be neglect
andg(2)(x);1/uxud22. The total number of points within a
ball of radiusR (R!L) around a certain point is evaluated

N~R!5ER

ddxg(2)~x!;S R

a0
D 2

, ~2.17!

and gives the Hausdorff dimensiondH
(2)52. Here the defini-

tion of dH
(2) is

N~R!5S R

a0
D dH

(2)

. ~2.18!

The second definition of the Hausdorff dimension is det
mined only through the behavior of correlation functions
the scaling regiona0!x!j, and has nothing to do with th
behaviors near the infrared cutoff. Hence it is a more app
priate definition than the first one from the thermodynam
viewpoint. Of course, it is quite natural that we should obt
the same dimensiondH from the both definitions, since th
extent of the system is approximately evaluated at the len
L whereN(L)5N.

Finally in this section, we comment on generalized typ
of grand canonical ensembles. Since the motivation of in
ducing grand canonical ensembles is to reproduce the s
thermodynamic quantities as those in the canonical one
may assign different weights in summing over differentN.
We define generalized grand canonical ensembles by
u-
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Zk0 ,l5 (
N51

`

Nlk0
NZN ,

~2.19!

Ĝk0 ,l
(2) ~p!5 (

N51

`

Nlk0
NĜN

(2)~p!,

where k0 is the fugacity. Here we assign an ext
N-dependent factorNl , in addition to the usual one,k0

N . The
criterion for a ‘‘good’’ grand canonical ensemble is such th
we can take the correct thermodynamic limit, or, in oth
words, correctly take the universal part in the sum overN.
That is, the correlation functions in the grand canonical
semble at the critical value of fugacity should reprodu
those in the canonical ensemble for largeN:

lim
N→`

gN
(2)5 lim

k0→k0,c

gk0 ,l
(2) . ~2.20!

This criterion holds if the grand canonical ensemble is do
nated by largeN systems. If the above criterion is satisfie
for some value ofl, it does hold for larger values ofl. As we
will see in Sec. III, we need to introduce the generaliz
ensumbles ofl .0 to satisfy the criterion in branched poly
mer systems. However, in the case of random walks,
already holds for the conventional grand canonical ensem
of l 50, and we do not need to introduce the generaliz
ones.

From Eqs. ~2.11! and ~2.12!, the generalized partition
functions and the correlation functions are given by

Zk0 ,l5S k0

]

]k0
D l

Zk0
,

~2.21!

Ĝk0 ,l
(2) ~p!5S k0

]

]k0
D l

Ĝk0

(2) .

We are interested in behaviors near the critical pointdk
;0 (N→`) and in the scaling region where 1/(kc2k0)
.1/(kc2h(p)k0)@1/kc . In this region, they become

Zk0 ,l;
Vkc

l 12l !

~kc2k0! l 11
,

Ĝk0 ,l
(2) ~p!;

2kc
l 14~ l 11!!

@kc2h~p!k0#~kc2k0! l 12

3S 11
l

l 11

kc2k0

kc2h~p!k0
1••• D

;
2kc

l 14~ l 11!!

~kc2k0! l 12

1

k0H~p!

3S 12
dk

~ l 11!k0

1

H~p!
1••• D . ~2.22!

Since^N&5Zk0 ,l 11 /Zk0 ,l5kc( l 11)/dk for the generalized
grand canonical ensembles ofl, the normalized correlation
functions become
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ĝk0 ,l
(2) ~p!;

2^N&
V

1

H~p!S 12
1

^N&H~p!
1••• D , ~2.23!

which agrees with the previous result@Eq. ~2.14!# of l 50.

III. BRANCHED POLYMER DYNAMICS

A. Canonical ensemble

Branched polymers are a statistical system ofN points
connected byN21 bonds whose lengths are of ordera0. The
canonical partition function is defined as

ZN5
1

N! (
G:tree graph

E )
i 51

N

ddyi )
( i j ):bond ofG

f ~yi2yj !,

~3.1!

where f (x) is a function assigned to each bond in ea
graph, and it damps sufficiently fast at long distances co
pared to the typical length scalea0. The presence of the
factor 1/N! is due to the fact that theN points are regarded
identical.

We can calculate a partition function for eachN, by
counting the number of all possible tree graphs:

Z15V,

Z25
1

2!
f̂ ~0!V,

Z35
1

3!
3 f̂ ~0!2V,

~3.2!

Z45
1

4!
16f̂ ~0!3V,

A

ZN5
1

N!
NN22 f̂ ~0!N21V,

where f̂ (p) is a Fourier transform off (x),

f̂ ~p!5E ddx eipxf ~x!, ~3.3!

andV is the total volume of the system. A derivation of th
general form of Eq.~3.2! is given in Appendix A.

We define an~unnormalized! m-point correlation function
of density operators as

GN
(m)~x1, . . . ,xm!5ZN^r~x1!•••r~xm!&N

5
1

N! (
G:tree graph

E )
i 51

N

ddyi )
( i j ):bond ofG

3 f ~yi2yj !r~x1!•••r~xm!, ~3.4!

where the density operator is defined by

r~x!5(
i 51

N

d (d)~x2yi !. ~3.5!
-

Due to the translational invariance, the one-point function
proportional to the partition function:

GN
(1)5

N

V
ZN . ~3.6!

The one-point function is nothing but the partition functio
with one marked point.

B. Grand canonical ensemble

We then define partition functions andm-point correlation
functions in the generalized grand canonical ensembles a
Sec. II:

Zk0 ,l5 (
N51

`

Nlk0
NZN , ~3.7!

Gk0 ,l
(m) ~x1, . . . ,xm!5 (

N51

`

Nlk0
NGN

(m)~x1, . . . ,xm!.

~3.8!

k0 is the fugacity.
The criterion for a ‘‘good’’ grand canonical ensemble

such that we can take the correct thermodynamic limit in
following sense. The correlation functions in the grand c
nonical ensemble at the critical value of fugacity should
produce those in the canonical ensemble for largeN,

lim
N→`

gN
(m)5 lim

k0→k0,c

gk0 ,l
(m) , ~3.9!

where we have defined normalized correlation functions

gN
(m)5

GN
(m)

ZN
, gk0 ,l

(m) 5
Gk0 ,l

(m)

Zk0 ,l
. ~3.10!

In the case of random walks, we have confirmed that t
does hold for any non-negative value ofl, but we need to
check it in the case of branched polymers. To satisfy t
criterion, the grand canonical ensembles withN-dependent
weights should be dominated by largeN systems. This is not
assured only by taking the fugacity near the critical valu
This is because, ifGN

(m) behaves like (k0,c)
2NNa for largeN

and l 1a,21, the summation overN is dominated by a
small N system, not by the largeN;kc /Dk even near the
critical point. On the other hand, if we take a sufficient
large l, we can obtain the correct largeN correlation func-
tions in the grand canonical ensembles, which are, of cou
independent ofl.

We illustrate the above mentioned criterion by taking t
partition function as an example. Since the canonical
semble partition function~3.2! behaves at largeN as

ZN;
N25/2

A2pe2N
f̂ ~0!N21V, ~3.11!

the grand canonical ensemble is approximated by
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Zk0 ,l;
V

A2p f̂ ~0!
(
N51

`

Nl 25/2~k/kc!
N

;
V

A2p f̂ ~0!
E

0

`

dNNl 25/2e2NDk/kc, ~3.12!

where

k5 f̂ ~0!k0 ,

kc5e21, ~3.13!

Dk5kc2k.

If we takel sufficiently large, the integrand in Eq.~3.12! has
a peak atN;kc /Dk, and we can makêN& large by letting
k approachkc . On the other hand, ifl is not sufficiently
large, a nonuniversal smallN behavior dominates the sum
mation, and we cannot obtain the correct answer of the la
N limit by a grand canonical ensemble.

C. Schwinger-Dyson equation

In this subsection, we recapitulate the arguments that
correlation functions for branched polymers in the conv
tional grand canonical ensemble are given by masslessf3

theory. Let us consider the correlation functionsGk0

(m)

5Gk0 ,l 50
(m) , which are suitable for Schwinger-Dyson anal

sis:

Gk0

(m)~x1, . . . ,xm!5 (
N51

`

k0
NGN

(m)~x1, . . . ,xm!. ~3.14!

We write a Fourier transform ofGk0

(m)(x1, . . . ,xm) as

Ĝk0

(m)(p1, . . . ,pm21):

~2p!dd (d)~p11•••1pm!Ĝk0

(m)~p1, . . . ,pm21!

5E ddx1
•••ddxmeip1x1

•••eipmxm
Gk0

(m)~x1, . . . ,xm!.

~3.15!

The Schwinger-Dyson equation for the one-point funct
Ĝk0

(1) becomes

b5keb, ~3.16!

FIG. 1. Schwinger-Dyson equation for the one point functio

The gray blob and black point meanĜk0

(1) andk0, respectively.
e

e
-

where

b[ f̂ ~0!Ĝk0

(1) , ~3.17!

as can be seen from Fig. 1.
At the critical point, as illustrated in Fig. 2,

bc51,
~3.18!

kc5e21,

db/dk diverges. Near this critical point,^N& becomes large,

Db;A2eADk;1/A^N&, ~3.19!

where

Db5bc2b,
~3.20!

Dk5kc2k.

The one-point function~which is equal to the partition func
tion of l 51) now behaves as follows:

Zk0 ,l 515(
N

Nk0
NZN5V(

N
k0

NGN
(1)5VĜk0

(1)

5
bV

f̂ ~0!
;

V

f̂ ~0!
~12A2eADk!. ~3.21!

Next we consider the two-point functionĜk0

(2)(p). When

we pick up any two points on a tree graph, we can fix t
path connecting these two points. Thus, as can be seen
Fig. 3, the two-point function is calculated to be

Ĝk0

(2)~p!5(
s50

`

f̂ ~p!s~Ĝk0

(1)!s11

5
b

f̂ ~0!@12bh~p!#
, ~3.22!

where

.

FIG. 2. Schwinger-Dyson equationk5be2b. At the critical
point, bc51 andkc5e21.

FIG. 3. The two-point functionĜk0

(2) is created from the one

point functionĜk0

(1) , which is shown by a gray blob.
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h~p![ f̂ ~p!/ f̂ ~0![12H~p!512ca0
2p21•••.

~3.23!

Here c is a positive constant of order 1. Recall thatf (x)
damps rapidly out of the region 0,x,a0.

Near the critical point,b;bc51, the two-point correla-
tion function behaves as

Ĝk0

(2)~p!5
b

f̂ ~0!

1

H~p!1Dbh~p!

;
1

H~p!1^N&21/2
. ~3.24!

Here we used Eq.~3.19!. Thus the correlation length isj
5a0N1/4, which shows the first definition of the Hausdor
dimension defined in Eq.~2.15! to be dH

(1)54. Let us con-
sider the region

a0!x,j5a0N1/4, ~3.25!

or, in momentum space,

1

j
5N21/4/a0,p!1/a0 . ~3.26!

a0 gives an ultraviolet cutoff, whereasj gives an infrared
cutoff length over which correlation functions damp rapid
In the above scaling region of Eq.~3.26!, the correlation
function behaves as an ordinary massless fieldĜk0

(2)(p)

;1/p2, and gives the second definition of the Hausdorff
mension of Eq.~2.18!, dH

(2)52. This is different from the
Hausdorff dimensiondH

(1) determined from the relation of th
system sizeN and the extent of the system. In Sec. III D, w
show that the above behavior of the correlation function
the scaling region is not correct and hence gives the incor
Hausdorff dimensiondH

(2) .
Finally, we considerm.2 point correlation functions. As

in the case of the two-point function, whenm points are fixed
on each tree graph, we can uniquely fix the path connec
these points. Therefore, anm-point function Ĝk0

(m) is repre-

sented as a summation over all tree diagrams withm fixed
points in whichĜk0

(2)(p) appear as propagators. For examp

Ĝk0

(3)~p,q!5~Ĝk0

(1)!22Ĝk0

(2)~p!Ĝk0

(2)~q!Ĝk0

(2)~p1q!.

~3.27!

In general, we obtain the following result form-point corre-
lation functions;

Ĝk0

(m);~correlation functions of massless

f3 theory at tree level!. ~3.28!

D. Correlation functions in the thermodynamic limit

Let us consider the generalizedm-point correlation func-
tions with l>1. From definition~3.8!, they can be obtained
by applying thel th derivative to thel 50 case:
.

-

n
ct

g

,

Ĝk0 ,l
(m) ~p1, . . . ,pm21!5S k0

]

]k0
D l

Ĝk0 ,l 50
(m) ~p1, . . . ,pm21!

5S b

12b

]

]bD l

Ĝk0 ,l 50
(m) ~p1, . . . ,pm21!.

~3.29!

Partition functions are obtained from Eq.~3.21! as

Zk0 ,l5S b

12b

]

]bD l 21 bV

f̂ ~0!
. ~3.30!

Near the critical point (bc51), these become

Zk0 ,l>2;
V

f̂ ~0!

~2l 25!!!

~12b!2l 23
. ~3.31!

The two-point function withl 51 is given by

Ĝk0 ,l 51
(2) ~p!5S b

12b

]

]bD S b

f̂ ~0!@12bh~p!#
D

;
1

f̂ ~0!

1

~12b!@12bh~p!#2

;
1

p4
. ~3.32!

This is due to the fact that in the scaling region@Eq. ~3.26!#
and near the critical point, the following inequality holds:

1

b
;1!

1

12bh~p!
;

1

c~a0p!21N21/2
!

1

12b
;AN.

~3.33!

This behavior is different from that ofĜk0 ,l 50
(2) ;1/p2. Simi-

larly, for l>2, the behavior of the two-point function be
comes

Ĝk0 ,l>2
(2) ~p!;

1

f̂ ~0!

~2l 23!!!

~12b!2l 21@12bh~p!#2

3F112
12b

12bh~p!
16

l 22

2l 23 S 12b

12bh~p! D
2

1•••G . ~3.34!

Due to inequality~3.33!, the derivative]/]b acts dominantly
on 1/(12b), not on 1/@12bh(p)#. The normalized two-
point functions now become
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ĝk0 ,l>2
(2) ~p!;

1

V

2l 23

~12b!2

1

@12h~p!#2

3F S 123
~12b!2

2l 23

1

@12h~p!#2
1••• D

;
^N&
V

1

H~p!2 S 123
1

^N&

1

H~p!2

1OS S 1

^N&H~p!2D 2D D G . ~3.35!

Here we have used̂N&5Zk0 ,l 11 /Zk0 ,l5(2l 23)/(12b)2

for the generalized grand canonical ensembles ofl. Their p
dependences are all the same except in thel 50 case. The
l 50 case, which can be obtained directly from t
Schwinger-Dyson equation, does not reproduce the cor
thermodynamic result. Instead, we should consider a g
grand canonical correlation function withl>1; otherwise a
nonuniversal smallN behavior affects the summation and w
cannot obtain the universal result. In Appendix B, we e
mate the largeN asymptotic behavior of the two-point func
tion by the saddle point method. Such an explicit analyti
result is completely consistent with the analysis here.

The behavior ofĝk0 ,l>1
(2) (p);1/p4 gives~the second defi-

nition of! the Hausdorff dimension@Eq. ~2.18!# dH
(2)54,

which is now consistent with~the first definition of! the
Hausdorff dimension discussed in Sec. III C. An argum
expected from Fig. 3 is that the effect of branching could
absorbed by renormalizing the mass. If so, the propag
would behave like that of a random walk with a renorm
ized mass, and we might obtain a result identical to tha
the l 50 case. In Sec. IV we discuss why this argument is
correct.

Similarly, three-point functions become

ĝk0 ,l 50
(3) ~p,q!;g~p!g~q!g~p1q!,

ĝk0 ,l>1
(3) ~p,q!;g~p!8g~q!g~p1q!1g~p!g~q!8g~p1q!

1g~p!g~q!g~p1q!8, ~3.36!

where

g~p!5
1

12bh~p!
;

1

p2
,

~3.37!

g8~p!5
1

~12bh~p!!2
;

1

p4
.

The behaviors do not change abovel 51. Only one propaga-
tor in a graph is replaced byg8(p). This is because the
derivative ]/]b dominantly acts on the factor 1/(12b)
rather than on 1/(12bh(p)), as in the case of two-poin
functions. Form-point functions (m.3), we can obtain the
same result.
ct
d

-

l

t
e
or
-
f
t

ĝk0 ,l 50
(m) ;~correlation functions forf3 theory

at tree level!,

ĝk0 ,l>1
(m) ;~correlation functions forf3 theory at tree level

with a mass insertion!. ~3.38!

The universal correlation functions withl>1 represent the
correct correlation functions in the thermodynamic limit.1

As a consistency check, the following relation between
(m11)-point function and anm-point function must hold:

ĝk0 ,l>1
(m11) ~p1, . . . ,pm21,pm50!

5^N&ĝk0 ,l>1
(m) ~p1, . . . ,pm21!. ~3.39!

It actually holds because on the left-hand side of Eq.~3.39!,
the special class of diagrams dominate in which themth end
point is attached to a propagatorg8(p). This is due to the
inequality g8(p50)g(p)@g8(p)g(p50). Therefore, it is
equal to the right-hand side of Eq.~3.39!.

IV. PHYSICAL INTERPRETATION BY A SINGLE
MOTHER UNIVERSE

In this section, we give a physical interpretation of wh
the propagator behaves as 1/p4 instead of 1/p2. As we can
see from Fig. 3, the effect of branching seems to be abso
by renormalizing the mass, and we might conclude that
two-point function behaves like that of a random walk. If th
is the case, the propagator should be given by an ordin
massive scalar particle with a renormalized mass (a0N1/4)21,
instead of (a0N1/2)21. Similarly, higher point correlation
functions should be given by tree graphs off3 field theory.
As we saw in Sec. III, these are not the correct behaviors
correlations. In this section, we give a physical interpretat
of why the propagator behaves as 1/p4 instead of a conven-
tional behavior 1/p2 and why the higher point correlatio
functions behave as inf3 theory with a single mass inser
tion.

Let us consider the two-point function as an example. T
two-point functionĜk0

(2)(p) was defined by a sum of two

point functions in the canonical ensemble@Eq. ~3.14!#:

Ĝk0

(2)~p!5 (
N51

`

k0
NĜN

(2)~p!. ~4.1!

On the other hand, from Eq.~3.22!, the function is written as
a sum of all contributions overs, wheres is the length be-
tween the two points in concern. Each termĜk0

(1) is repre-

sented by a gray blob in Fig. 3. When we fix the total numb
of the systemN, the N points are distributed amongs11
blobs. We will show here that the most dominant contrib

1If we took the generalized ensemble@Eq. ~3.8!# as a real physical
system, we could see a phase transition atl 5 l c (0, l c<1). Above
l c , the system size grows ask approaches tokc , while it does not
grow belowl c .
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tions to the correlation functions are those in which most
N points are concentrated on only a single blob. We call t
blob the mother universe. In the branched polymer, ther
only one mother universe, and the other universes~blobs!
contain much fewer points than the mother universe.

To show this, we first note that the one-point functi
~blob! is expanded as

Ĝk0

(1)5 (
n51

`

k0
nun , ~4.2!

whereun is given at largen as

un5Gn
(1);

n23/2f̂ ~0!n21en

A2p
. ~4.3!

By using this expansion and Eq.~3.22!, we obtain the two-
point function for fixedN as

ĜN
(2)~p!5(

s50

`

f̂ ~p!sS (
n051

`

••• (
ns51

`

un0
•••uns

dN,n01•••nsD .

~4.4!

Each contribution in the brackets comes from a graph
which the first blob containsn0 points, the secondn1 points,
and so on. Using Eq.~4.3!, the term in the brackets become

S 1

A2p
D s11

f̂ ~0!N2s21eN

3 (
n051

`

••• (
ns51

`

n0
23/2n1

23/2
•••ns

23/2dN,n01•••ns
.

~4.5!

In the case ofs51, the summation

(
n51

N21

n23/2~N2n!23/2. ~4.6!

is dominated in terms ofn;0 and n;N. For the general
case with the exponenta,

(
n51

N21

na~N2n!a, ~4.7!

the sum is dominated at the boundaries fora,21 and
asymmetry arises between two blobs. Conversely, fora.
21, N points are distributed equally, and neither blob
special. This argument can be generalized tos.1. To con-
clude, mostN points belong to a single blob along the prop
gator. We then have to divide the propagator with lengths at
the mother universe. Since the other blobs contain onl
finite number of points, the effect of branching, other th
dividing the propagator into two pieces, is simply to reno
malize the mass of the propagator. Hence the propag
behaves as a product of two ordinary ones with a renorm
ized mass:

ĜN
(2)~p!;S 1

p21m2D 2

. ~4.8!
f
is
is

n

-

a

-
tor
l-

We can also apply a similar argument for higher-point fun
tions. If the effect of branching is only to renormalize th
mass term, the higher-point correlation functions will be re
resented by diagrams off3 theory with propagators 1/(p2

1m2), which is not the correct thermodynamic behavior
the correlation functions, as we saw in Sec. III. Similar to t
case of two-point functions above, we can argue that ther
only one mother universe in which most of theN points
reside. Since only a single blob contains infinitely ma
points, we have to divide one of the propagators at
mother universe, and this propagator behaves as 1p2

1m2)2. This mother universe corresponds to the mass in
tion. The other blobs contain a finite number of points, a
the effect of branching can be absorbed into mass renorm
ization. This is the physical reason why the higher po
correlation functions are represented by tree diagrams off3

field theory with a single mass insertion.
The above statement that there is only one mother u

verse in the branched polymer is explained differently
follows. Let us again consider original branched polym
systems withN points andN21 bonds. By counting the
number of ways in which we can divide a branched polym
into two parts by cutting a bond, we obtain a relation

~N21!ZN /V5 f̂ ~0! (
N851

N21

@N8ZN8 /V#@~N2N8!Z(N2N8) /V#.

~4.9!

The factor (N21) on the left-hand side is interpreted as t
number of bonds we can cut to divide the whole into tw
parts. The factorsN8 and (N2N8) on the right-hand side are
interpreted as the number of points to which the bond c
necting the two parts is attached. SinceZN behaves as in Eq
~3.11! at largeN,

NZN /V@ f̂ ~0! (
N85Ne

N(12e)

@N8ZN8 /V#@~N2N8!Z(N2N8) /V#,

~4.10!

which means the summation on the right-hand side of
~4.9! is dominated by terms ofN8;0 or N8;N. This for-
mula can be interpreted as follows. If we divide any gra
into two parts by cutting some bond, we find only fini
points in one of them, most of them belonging to the oth
part. The mother universe belongs to the larger part. C
sider the two-point function as an example. By dividing t
graph of Fig. 3 into two parts at some bond, we find th
most points are dominantly distributed in only one of the

We can apply the same procedure to the dominant
with infinite points. After repeating this several times to d
vide the total graph into several pieces, we find that onl
single part consists of infinitely many points, and that t
others consist of finite points. We can find out which blob
Fig. 3 is the mother universe when, after several repetitio
the dominant part with infinite points is detached from t
path in Fig. 3. We can also apply the same argument to
higher-point functions. Here we point out the difference
the argument given here from that given for random surfa
@8#. Although a similar inequality appears for random su
faces, the factorN is absent on the left-hand side of inequa
ity ~4.10! in that case.
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V. CONCLUSION AND DISCUSSION

In this paper we have shown that correlation functions
branched polymers are given by functions forf3 theory at
tree levelwith a single mass insertion, if we take the ther-
modynamic limit correctly. It is not given by functions fo
f3 theory at the tree levels themselves. We have interpre
the single mass insertion as the presence of a single mo
universe in branched polymers.

We have reviewed random walks in order to clarify t
relation between the canonical and grand canonical
sembles. We have introduced generalized grand canon
ensembles which assign different weights for different s
tem sizes. We have emphasized that a ‘‘good’’ grand can
cal ensemble is one in which the ensemble average is d
nated by systems of large size. In branched polymers,
criterion is not satisfied in the conventional grand canon
ensemble. Nevertheless we can consider good grand ca
cal ensembles in branched polymers. Our conclusion follo
the universal prediction of good grand canonical ensemb
It represents the correct scaling behavior of the correla
functions in canonical ensembles of large system sizeN.
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APPENDIX A

In this appendix, we derive the canonical ensemble pa
tion function ~3.2! from the Schwinger-Dyson equatio
~3.16!. Let us solveb as a form of expansion ink. Each
coefficient is calculated to be

1

2p i Rk50
dk

b

kN11

5
1

2p i Rb50
db~12b!e2b

b

~be2b!N11
~A1!

5
NN21

N!
. ~A2!

Hence
r

ed
er

n-
al
-
i-
i-

is
l
ni-
s
s.
n

,
a-

i-

b5 (
N51

`
NN21

N!
kN. ~A3!

From Eqs.~3.6!, ~3.14!, and~3.17!, b is expanded as

b5 f̂ ~0! (
N51

`
N

V
ZNk0

N . ~A4!

Comparing these two expansions, we obtain the result of
~3.2!.

APPENDIX B

In this appendix, we derive the two-point correlatio
function in the canonical ensemble for fixed but largeN.
Similar to the calculation in Appendix A, we can obtain th
two-point function for a fixedN from Eq. ~3.22!;

S 1

f̂ ~0!
D N

GN
(2)~p!5

1

2p i Rk50
dk

Ĝk0

(2)~p!

kN11

5
1

2p i Rb50
db

1

f̂ ~0!

12b

12bh~p!
b2NebN.

~B1!

This integration can be estimated for largeN by the saddle
point approximation. Sinceb2NebN5eN(b2 log b), the saddle
point is atb51. The steepest descent direction is along
imaginary direction. We change the variable fromb to t
around the saddle point as

b2 logb512
t2

2
. ~B2!

The new parametert is written in terms ofb by

t5 i ~12b!S 11
12b

3
1

7

36
~12b!21••• D . ~B3!

Solving this, we obtain

1

b
2152 i t S 12

2

3
i t 2

13

36
t21••• D . ~B4!

Therefore, in the saddle point approximation, the correlat
function becomes
S 1

f̂ ~0!
D N21

ĜN
(2)~p!5

1

2p i E2`

`

dt
t

1/b211H~p!
eN[12(t2/2)]

5
eN

2pE2`

`

dt
t2~1213t2/361••• !

@H~p!22t2/31•••#21t2@1213t2/361•••#2 e2Nt2/2

5
N23/2eN

2p E
2`

`

dt
t2~1213t2/36N1••• !

@H~p!22t2/3N1•••#21t2/N@1213t2/36N1•••#2 e2t2/2, ~B5!

whereH(p)512h(p);c(a0p)2. Hence the normalized correlation function becomes



PRE 62 6269SCALING BEHAVIORS OF BRANCHED POLYMERS
ĝN
(2)~p!5

ĜN
(2)~p!

ZN

5
N

VE2`

` dt

A2p

t2~1213t2/36N1••• !

@H~p!22t2/3N1•••#21t2/N@1213t2/36N1•••#2 e2t2/2 ~B6!

5
N

VE2`

` dt

A2p

t2

H~p!224t2H~p!/3N1t2/N
e2t2/2S 11OS 1

ND D . ~B7!
e
he

io

sis-

d
mp-

ent
the
The correlation function for branched polymers behaves v
differently from the case of simpler random walks. In t
regionH(p)!1, it becomes

ĝN
(2)~p!;

N

VE2`

` dt

A2p

t2

H~p!21t2/N
e2t2/2. ~B8!

In the coordinate representation, the two-point correlat
function behaves as

gN
(2)~x!;E ddp

N

VE2`

` dt

A2p

t2

p41t2/N
e2t2/2 exp~ ip•x!

5E
2`

` dt

A2p
t2e2t2/2

1

uxud24E ddp
exp~ ip•ex!

p41t2uxu4/N

;
1

uxud24E2`

` dt

A2p
t2 expS 2

t2

2
2

Atuxu

A2N1/4D . ~B9!

In the scaling region 1!uxu!N1/4, the t integration is esti-
mated to be somex-independent number:
g

g.
ry

n

gN
(2)~x!;

1

uxud24
. ~B10!

This result for the canonical ensemble is completely con
tent with the result of the grand canonical ensemble@Eq.
~3.35!#.

On the other hand, foruxu@N1/4, the second term in the
exponential in thet integration dominates the first term, an
gives another power behavior instead of exponential da
ing:

gN
(2)~x!;

1

uxud12
. ~B11!

This is due to the contribution of the massless compon
(utu;0). This has no analog in the random walk, where
correlation damps exponentially with mass of orderN1/2.
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