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Scaling behaviors of branched polymers
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We study the thermodynamic behavior of branched polymers. We first study random walks in order to
clarify the thermodynamic relation between the canonical ensemble and the grand canonical ensemble. We
then show that correlation functions for branched polymers are given by thogé theory with a single mass
insertion, not those for the® theory themselves. In particular, the two-point function behavespds ot as
1/p?, in the scaling region. This behavior is consistent with the fact that the Hausdorff dimension of the
branched polymer is 4. In the appendixes we derive the exact two-point correlation function dbfinlarge
system sizeN, which is consistent with the analysis in the body of the paper.

PACS numbd(s): 05.40.Fb, 61.82.Pv

I. INTRODUCTION Our claim is that we need a single mass insertion in each

Branched polymers are the simplest generalization of thg}pomt correlation function of thes™ scalar field theory in

random walk, and have been studied extensivele, for order to describen-point correlation functions in branched

example, Ref[1]). They are of great importance not only in polymers. Mass insertion here means a change of a propaga-

statistical physics but also in particle physics, in particulartOr in eachm-point function from an ordinary one, i, to
' "1/p*. In particular, the two-point function behaves ap*/

for understanding the critical behavior of random surfaces 2 : TR
and quantum gravity2—4]. Our recent interest in branched not 1p<. Let us count the number of points which lie within

polymers arose from our attempt to formulate superstrin(\gﬁj's’tanceR from a fixed point ind (>4) dimensions. In the

theory nonperturbatively. In Ref5], we studied the dynam- apdom Wf.ilk’ this can _be4estimated|%’sby using the tW(.)'
ics of a type IIB matrix model in such a framewdigee Ref. point function. We obtaifiR” for branched polymers by using

4 . . . . .
[6] and also see Ref7] for review). In our matrix model a 1p” type propagator. This our findings are consistent with

approach, the eigenvalues of matrices were interpreted élge claim that branched polymers are four-dimensional frac-

space-time coordinates. In these investigations, we found t Is'tf‘ mful::pomt correla;on funct||on_ IS ?wen_ by a sum of
system of branched polymers in a simple approximation. Al-9raPns of the corresponding correlation function goi sca-

though it is far from the flat four-dimensional manifold, lar field theory at tree level, with a single mass insertion in

branched polymers share the saffiacta) dimensionality 4  €ach graph. _ ,
with our space-time coordinates. This might be the first in- OUur main results were announced in R&fl. In this paper
dication that superstring theory can explain the dimensionaiwe would like to give a fuller account of our results by
ity of our space-time. providing more detailed derivations and explanations. The
In this paper, we comment on a field theoretic descriptiorerganization of this paper is as follows. In Sec. Il, we review
of branched polymers. It is well known that a system offrandom walks in order to clarify the relation between the
random walks is described by free scalar field theory if therecanonical and grand canonical ensemble. In Sec. llI, we in-
is no effect of self-avoidance. Similarly, it is widely believed vestigate branched polymers. First we define a canonical en-
that a system of branched polymers is described by a scalaemble for a system of branched polymésgc. Il A), and
field theory with a three-point coupling, that ig> scalar  then introduce grand canonical ensemi§ec. Il B). We
field theory. However, we will show that this is not so by emphasize that the definition of a grand canonical ensemble
treating the universal part of the partition function carefully.is not unique. In Sec. Il C, we solve Schwinger-Dyson equa-
A system of branched polymers without self-avoidance canions for the conventional grand canonical ensemble, and ob-
be exactly solvable by introducing the grand canonical eniain results which correspond to the correlation functions of a
semble and using the so called Schwinger-Dyson techniquecalar ¢° theory. In Sec. Il D, we consider the thermody-
In order to extract the correct largélimit (N is the system namic limit of the correlation functions, and obtain the cor-
size or the thermodynamic limit, we have to check that therect universal behavior of these. In Sec. IV, we give a physi-
grand canonical ensemble is dominated by the larger sizeal interpretation of why the propagator behavep*1ih
system. In other words, we have to extract the universal parbranched polymers. Section V is devoted to conclusions and
discussions. We have two appendixes A and B which derive
the partition function and the two-point function in the ca-

*Email address: haoki@cc.saga-u.ac.jp nonical ensemble of branched polymers. In Appendix B we
"Email address: satoshi.iso@kek.jp derive the two-point correlation function exactly at a finite
*Email address: hkawai@gauge.scphys.kyoto-u.ac.jp system sizeN. The result is consistent with the analysis in
$Email address: kitazawa@post.kek.jp Sec. Il in the scaling region.
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1 RANDOM WALKS h(p)=F(p)/f(0)=exd—(ap)¥2]. (2.6
In this section, we give a brief introduction to random 5

walks in order to clarify the thermodynamic relation between H(p)=1—-h(p)=(agp)/2+---. 2.7
the canonical and grand canonical ensemble. The canonical . ) )
partition function with the system si¢ is given by We can approximate the two-point function as

N -1 50 )_2N 1 (1 1 +O( 1 ))

[T oty I f(y =y =V @1 WA=V Hp) |77 NH(p) "\ [INH(p) 2 o8

= i=

whereV is the total volume of the system, aridx) is a  in the scaling region
function assigned to each bond that damps sufficiently

quickly at long distances compared to the typical length scale 1
ay. f(p) is its Fourier transform: N-H(P) <1 (2.9
. . or
f(p)=f dx €P*f(x). (2.2
N~ Y4ay<p<llap. (2.10

For example, we can takigx) =exqd — (x/ao)2/2]
Correlation functions for densitg(x) == ;8 (x—y')
can be easily calculated. The one-point functlon becomes

The scaling region is between the ultraviolet cutoff seaje
and the infrared scale of the system extent, which is given by
52 aoNllz.
N-1 N The two-point correlation function is also calculated in
<P(X)>N_—f H ddy’ H fiyl—y > s (x—yh) the grand canonical ensemble. A conventional grand canoni-
z i=1 cal partition function is given as

== (2.3 % _ VKeko

Kc Ko

: (2.1

The two-point function is defined as . , - B
wherek, is the fugacity, and.= (f(0)) 1. For later conve-

N-1 nience, we first define an unnormalized two-point function
(PN p(X))n=5— f H dy 11 fy' =y by
N N 2) _i Z li~il N=fi=j|-1
x> sDxl-y)S s (x2—yi), G2(p) Fp)' o))
=1 =1
2.9 Ko 2 3 Ko

T (1= k)2 [1— rif — knf 2
and its Fourier transformation is given by ( 0" [1-kof (P)] [1 kol (0)]

B Kng 2 KOKg
(2)(p)=J’ d%(p(x)p(0))ne~"P (ko= Ko)* [ke— Kkoh(p)] (ke—Ko)?
LIS Goni-ilGoyn-i-ii-1 242
= =] —=Ji=
ZN(iE,' (@)D Hence the normalized two-point function becomes
li—il
_ls (1P G2(p)
_VE f(O) 9&(p)=——
"o
52 (h(p)¥N— s)—E __ 1 21k
) V1= kof(0)] [1=kof(p)]  V ke~ Ko
_ N
___2N /1_ h(p)[1—h(p) ])_ﬂ 2k, 1 1k,
V(1-h(p)\ N[1-h(p)] | V =50 ST s
2N (1_1_eNH(P) 1+o(1 )) [1_h(p)]+K_Ch(p)
“VH® |1 TNH(p) H(p) e .
(2.5 :v_a,i—ax(ﬂo K—,H(p))), (2.13

where Kc
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where Sk=k.— k. Since (N)=«k./Jk, the correlation *
function behaves as that of massive scalar particles Zyy 1= E N'KQZN,
N=1
- 2(N) 1 ) (2.19
9P ™ N Hp T AN 219 50) L NG
(p)+1AN) G =2 N'xgG(p),

and agrees with the result in the canonical ensemble calcu-h is the f v H . ¢
lation. This result gives the correlation lengéea,NY2, —~ WNEre ko IS the fugacily. Here we assign an extra

. . N
which indicates the Hausdorff dimension of random walkN-dependent T?Ctd“',; in addition to the usual one, . The
dy=2. criterion for a “good” grand canonical ensemble is such that

Here we give two different definitions of Hausdorff di- we can take the correct thermodynamic limit, or, in other

mensions. The first one is defined in terms of the relatiof/ords, correctly take the universal part in the sum oMer

between the system si2éand the extent of the system. The That is, the correl_a_tlon functions in thg grand canonical en-
infrared behavior of the above two-point function shows thaS€MPIe at the critical value of fugacity should reproduce
the correlation damps rapidly over the length scale '0Se in the canonical ensemble for lafge
=a,NY2 Since the extent of the systdm- ¢ is proportional
to N*2 the Hausdorff dimension is given tif"=2, where

d{M is defined as

lim g{’= lim g%, (2.20

N— oo Ko— Ko

This criterion holds if the grand canonical ensemble is domi-

L:aONl/d(Hl)_ (2.15  hated by largeN systems. If the above criterion is satisfied
for some value of, it does hold for larger values ¢f As we
The second definition is to use the behavior of the correlatior‘fvIII see in Sec. Ill, we need to introduce the generalized

function at much shorter length scale than the system siz nsumbles of>0 to satlsfy the criterion in branched pon—.
mer systems. However, in the case of random walks, this

L=¢£. In d-dimensional coordinate space, the density corre- : :
lation behaves as already holds for the conventional grand canonical ensemble

of =0, and we do not need to introduce the generalized
ones.
_exp(—m[x|) From Egs.(2.11) and (2.12, the generalized partition

(2)
g(x) |x|d-2 ' (2.19 functions and the correlation functions are given by

ﬁ I
wherem=1/¢£. If |x|<1/m, the mass term can be neglected Z Ko_) Z.,
andg®(x)~1/|x|9"2. The total number of points within a drg/ 70
ball of radiusR (R<L) around a certain point is evaluated as Y (2.21
6001= o 2.

(9K0 Ko

KO,|

R R\?2

N(R)=f dxg@(x)~ —) : (2.17)
o We are interested in behaviors near the critical pairt

) _ ] . ~0 (N—x) and in the scaling region where /(- ;)

and gives the Hausdorff dimensiaiff)=2. Here the defini-  ~ 1/(x_—h(p) ko)> 1/k,. In this region, they become

tion of d{? is

" . Vi 2
N(R)= R (2.18 01 (kg Kg)'
ao
o 2k (14 1)1
The second definition of the Hausdorff dimension is deter- G2 \(p)~ 2
mined only through the behavior of correlation functions in [«c—h(p) ko] (ke ko)
the scaling regioray<x<<¢, and has nothing to do with the Ke— Ko
behaviors near the infrared cutoff. Hence it is a more appro- X| 1+ 71 —hio) en + )
priate definition than the first one from the thermodynamic Ke=h(p)xo
viewpoint. Of course, it is quite natural that we should obtain 240+ 1
the same dimensiod, from the both definitions, since the ~_C i
extent of the system is approximately evaluated at the length (ko= Ko)' T2 KoH(P)
L whereN(L)=N. s 1
Finally in this section, we comment on generalized types x| 1— ok - L (2.22

of grand canonical ensembles. Since the motivation of intro- (I+1)xo H(p)

ducing grand canonical ensembles is to reproduce the same )
thermodynamic quantities as those in the canonical one, weinc&(N)=Z,. 1+1/Z, 1= rc(I+1)/5k for the generalized
may assign different weights in summing over differéht grand canonical ensembles lofthe normalized correlation
We define generalized grand canonical ensembles by functions become
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2(N) 1/1_ 1
V. H(p)\" (N)H(p)

which agrees with the previous res(ifiq. (2.14)] of | =0.

9@ (p)~ 1, 223

ol

I1l. BRANCHED POLYMER DYNAMICS
A. Canonical ensemble

Branched polymers are a statistical systemNopoints
connected byN—1 bonds whose lengths are of ordgt The
canonical partition function is defined as

N

[ ady’

g f
G:tree graphJ =1

INTNT } fly'=y),
! (ij):bond ofG
(3.0

where f(x) is a function assigned to each bond in each
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Due to the translational invariance, the one-point function is
proportional to the partition function:

N

G<N1>=va. (3.6

The one-point function is nothing but the partition function
with one marked point.

B. Grand canonical ensemble

We then define partition functions andpoint correlation
functions in the generalized grand canonical ensembles as in
Sec. Il

Zeg1= 2 N'kOZn, (3.7

graph, and it damps sufficiently fast at long distances com-
pared to the typical length scaks,. The presence of the
factor 1N! is due to the fact that th&l points are regarded

identical.
We can calculate a partition function for ea®h by
counting the number of all possible tree graphs:

Zl:V,

1.

1. 2
Zy=5;31(0)?V,

1 (3.2
Z4=5161A°(0)3V,
1 o N-23N-1
ZN:mN HO A
wheref(p) is a Fourier transform of(x),
f(p):J d9% eP*f(x), (3.3

G (X, L ,xm)=NE:l N' G (X, ... x™).
(3.9

Ko Is the fugacity.

The criterion for a “good” grand canonical ensemble is
such that we can take the correct thermodynamic limit in the
following sense. The correlation functions in the grand ca-
nonical ensemble at the critical value of fugacity should re-
produce those in the canonical ensemble for |age

limg("=lim g™

Nooo K0,|’
_

(3.9

Koﬁ KO,C

where we have defined normalized correlation functions as

G ™,
m_>"N_ (m _ "o
gN ZN ’ gKO'I Z | . (31@

In the case of random walks, we have confirmed that this
does hold for any non-negative value lpfbut we need to
check it in the case of branched polymers. To satisfy this
criterion, the grand canonical ensembles wittdependent
weights should be dominated by larjesystems. This is not
assured only by taking the fugacity near the critical value.

andV is the total volume of the system. A derivation of the This is because, iG{" behaves like ko) NN for largeN

general form of Eq(3.2) is given in Appendix A.
We define arfunnormalized m-point correlation function
of density operators as

GIV(xL, .. XM =Zy(p(xY) - - - p(X™)y
N

— i f dy,i
N! G:wree graphJ 1=1 (ij):bond of G
xf(y'=yhp(xh)---p(x™), (3.4
where the density operator is defined by
N
p(0=2, 3V (x=y"). (3.5

and | +a<—1, the summation oveN is dominated by a
small N system, not by the larghl~ «./Ax even near the
critical point. On the other hand, if we take a sufficiently
largel, we can obtain the correct lardé correlation func-
tions in the grand canonical ensembles, which are, of course,
independent of.

We illustrate the above mentioned criterion by taking the
partition function as an example. Since the canonical en-
semble partition functiot3.2) behaves at larghl as

N—5/2 .
o)V,

J2me

the grand canonical ensemble is approximated by
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b
e

= Ke®

b =

b

FIG. 2. Schwinger-Dyson equatioR=be™. At the critical

point,b,=1 andk,=e .

FIG. 1. Schwinger-Dyson equation for the one point function. where
The gray blob and black point me&}fklo) and ko, respectively.

b=F(0)GY, (3.17)
V oo
ol ™~ = > N2/ k)N as can be seen from Fig. 1.
V2mf(0) N=1 At the critical point, as illustrated in Fig. 2,
\% f b.=1
~— dNN|*5/Ze*NAK/KC, 3.1 c )
J27f(0)Jo (.12 B (3.18
Kc=€ ",
where
A db/dk diverges. Near this critical poin{N) becomes large,
k=1(0)xg,
° Ab~\2e Ak~ 1//(N), (3.19
Ke=e 1, (3.13
where
AKk= kK.~ k. Ab=b—b,
If we takel sufficiently large, the integrand in E(8.12) has (3.20
a peak aN~ «k./Ak, and we can makéN) large by letting Ak=re= K.

k approachk.. On the other hand, if is not sufficiently . . _ "
large, a nonuniversal small behavior dominates the sum- The one-point functioriwhich is equal to the partition func-

mation, and we cannot obtain the correct answer of the larghion of I =1) now behaves as follows:
N limit by a grand canonical ensemble.
Zy1-1= 2 NkQZy=V2, kyG{=VGY
C. Schwinger-Dyson equation N N
In this subsection, we recapitulate the arguments that the bV \V;

correlation functions for branched polymers in the conven- =i W(l_ V2eVA«k). (3.2
tional grand canonical ensemble are given by massfe'ss (0) 1(0)

theory. Let us consider the correlation functio”

Next we consider the two-point functidd{?(p). When
=Gf<";)’|:0, which are suitable for Schwinger-Dyson analy- P "O(p)

we pick up any two points on a tree graph, we can fix the

SIS: path connecting these two points. Thus, as can be seen from
o Fig. 3, the two-point function is calculated to be
GV, ... XM= 2 koGP, L X™). (3.14 .
N=1 ~ N ~
G2(p)=2 F(p)AGE)**

We write a Fourier transform ofo(’;‘)(xl, ... xM as s=0
A(m)s A1 m—1y.
Gy (P7 ... p™ o) b

“H(0[1-bh(p)]’ @22
. —bh(p

(2m*sD(pt+- - +pMGI(ph .. p™

where

:f ddxl_ . ~ddeeiplxl. . .eipmme&rg)(le L ’Xm)_

(3.19

The Schwinger-Dyson equation for the one-point function
GY becomes
"o FIG. 3. The two-point functiorG?) is created from the one-
b=ke®, (3.16  point functioné%’, which is shown by a gray blob.
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h(p)=f(p)/f(0)=1—H(p)=1—caZp?+---. A _ a\ A _
(P=HRIH (p P 323 COuPL M= ko] GDo(Ph P
Here c is a positive constant of order 1. Recall thgi) [ b 4 ' (m) 1 o1
damps rapidly out of the region<Ox<ay. “\1-b b GKo":O(p ' 7).
Near the critical pointb~b.=1, the two-point correla-
tion function behaves as 329
5C)(p)= b 1 Partition functions are obtained from E@®.21) as
%' P~ %(0) H(p)+Abh(p)
1 S b 4\ !bv -
-~ (3.24 ©~\1-b ] 7o)’ (320
H(p)+(N)~ 2
Here we used Eq(3.19. Thus the correlation length i§  Near the critical pointlf.=1), these become
=ao,N* which shows the first definition of the Hausdorff
dimension defined in Eq2.15 to bed®=4. Let us con-
sider the regi v (@-s
gion o =2~ = . (3.31
7% f(0) (1-b)?-3
ag<x<&=ay N4, (3.25
or, in momentum space, The two—point function witH =1 is given by
1
—=N"Ya,<p<illa,. (3.26 ~2) b o b
g GK I:l(p): TN =
o 1=b db/\$(0)[1-bh(p)]
ao gives an ultraviolet cutoff, whereas gives an infrared
cutoff length over which correlation functions damp rapidly. 1 1
In the above scaling region of E¢3.26), the correlation £(0) (1-b)[1—-Dbh(p)]?
function behaves as an ordinary massless fieff)(p)
~1/p?, and gives the second definition of the Hausdorff di- - i (3.32
mension of Eq.(2.18, d{?=2. This is different from the p*

Hausdorff dimension") determined from the relation of the

system sizé\ and the extent of the system. In Sec. Il D, We This is due to the fact that in the scaling regidiy. (3.26]

show that the above behavior of the correlation function IN3nd near the critical point, the following inequality holds:

the scaling region is not correct and hence gives the incorrect
Hausdorff dimensiom(?) .

Finally, we considem>2 point correlation functions. As 1 1 1 1
in the case of the two-point function, whempoints are fixed b 1< 1-bh(p) c(agp)2+ ,\rl/z< 1-b N
on each tree graph, we can uniquely fix the path connecting 0 (3.33

these points. Therefore, an-point function GE(';‘) is repre-
sented as a summation over all tree diagrams witfixed

) This behavior is different from that €8?),_,~ 1/p2. Simi-
points in whlchGKo (p) appear as propagators. For example, 0

larly, for =2, the behavior of the two-point function be-

. . . . . comes
GPp.a)=(G)*C2(p) G2 (G2 (p+a).
(3.27
60 (pyort (21-3)1
llgti%insjr:(l:,ﬁ\cl)vﬁsgbtaln the following result farpoint corre- ro.=2\P £(0) (1-b)?~[1—bh(p)]
A 1-b -2 [ 1-b \?
G~ (correlation functions of massless X2 hh) T %21=3 | Tobh(p)
3 theory at tree level 3.2
¢ y e (3.28 L (3.34

D. Correlation functions in the thermodynamic limit

Let us consider the generalizedpoint correlation func- Due to inequality(3.33), the derivativei/ db acts dominantly
tions with1=1. From definition(3.8), they can be obtained on 1/(1-b), not on 1f1—bh(p)]. The normalized two-
by applying thelth derivative to thd =0 case: point functions now become
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1 21-3 1 éfcrg)’|:0~(correlation functions fors® theory

q(2) ~—
gKO,IBZ(p) V(1—b)2 [1_h(p)]2

at tree leve),

2
X 1—3(l b) ! +..- g\™,_,~ (correlation functions fogs® theory at tree level
21=3 [1-h(p)P o
Ny 1 1 with a mass insertion (3.39
VA H(p)2 1_3W H(p)2 The universal correlation functions will=1 represent the
correct correlation functions in the thermodynamic lifit.
1 2 As a consistency check, the following relation between an
+0 ((’\DTP)Z )) : (8.39  (m+1)-point function and amn-point function must hold:

"(m+i) l’ o mfly m—Q
Here we have usedN)=Z, .1/Z.,=(21-3)/(1-b)? Oy =2(P PrRT0)
for the generalized grand canonical ensemblek @heir p =(NYg'™ _,(p% ... p™ Y. (3.39
dependences are all the same except inlth® case. The o

|=0 case, which can be obtained directly from thelt actually holds because on the left-hand side of B39,
Schwinger-Dyson equation, does not reproduce the correghe special class of diagrams dominate in whichrtiik end
thermodynamic result. Instead, we should consider a googoint is attached to a propagatgf(p). This is due to the
grand canonical correlation function witk=1; otherwise a inequality g’ (p=0)g(p)>g’(p)g(p=0). Therefore, it is
nonuniversal smalN behavior affects the summation and we equal to the right-hand side of E¢B.39.

cannot obtain the universal result. In Appendix B, we esti-

mate the Iargexl asymptotic behavior of the tWO-pOint func- IV. PHYSICAL INTERPRETATION BY A SINGLE

tion by the saddle point method. Such an explicit analytical MOTHER UNIVERSE

result is completely consistent with the analysis here.

The behavior 0§'?,_,(p) ~ 1/p* gives(the second defi-

- In this section, we give a physical interpretation of why
kgl =

» . . the propagator behaves ap4instead of 1p. As we can

(2)_

n|t|pn (.)f) the Haus.dorff dlmen5|or_[Eq. (2:13,] di’=4, see from Fig. 3, the effect of branching seems to be absorbed
which is now consistent wittthe first definition of the  p, renormalizing the mass, and we might conclude that the
Hausdorff dimension discussed in Sec. Ill C. An argumentyyo_nqint function behaves like that of a random walk. If this
expected from Fig. 3 is t_hat the effect of branching could bgg e case, the propagator should be given by an ordinary
absorbed by re.normallzmg the mass. If so, the propagatqy,-ssive scalar particle with a renormalized masdE) 1,
would behave like that of a random walk with a renormal-i oo of 6oN*2 L. Similarly, higher point correlation
ized mass, and we might ob'Fam a result |Qent|cal to that 0tunctions should be given by tree graphsdgf field theory.

thel =0 case. In Sec. IV we discuss why this argument is nofxg \ve saw in Sec. I, these are not the correct behaviors for

correct. . . correlations. In this section, we give a physical interpretation
Similarly, three-point functions become of why the propagator behaves ap?instead of a conven-
~(3) tional behavior 1% and why the higher point correlation
i, 1=0(P,a)~9(p)g(a)g(p+a), functions behave as i theory with a single mass inser-
tion.

Let us consider the two-point function as an example. The
two-point function G‘KZO)(p) was defined by a sum of two-
+9(p)g(a)g(p+a)’, (3.36  point functions in the canonical ensembpkgy. (3.14]:

9 1=1(p,a)~g(p) g(c)g(p+a) +9(p)g(a) g(p+a)

where . .
GE(p)= 2 <0G (p)- (4.9

1

1
9(p)= 1-bh(p) p’ On the other hand, from E¢3.22), the function is written as
P a sum of all contributions oves, wheres is the length be-

(3.39 tween the two points in concern. Each teéﬁlo) is repre-
1

g'(p)= ; ~ sented by a gray blob in Fig. 3. When we fix the total number
(1-bh(p))? p* of the systemN, the N points are distributed amongH 1
blobs. We will show here that the most dominant contribu-

The behaviors do not change abdwel. Only one propaga-

tor in a graph is replaced bg’(p). This is because the

derivative 9/db dominantly acts on the factor 1/(ib) 1if we took the generalized ensembleg. (3.9)] as a real physical
rather than on 1/(xbh(p)), as in the case of two-point system, we could see a phase transitioh=alt, (0<I.<1). Above
functions. Form-point functions (n>3), we can obtain the |, the system size grows asapproaches ta., while it does not
same result. grow belowl .
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tions to the correlation functions are those in which most ofWe can also apply a similar argument for higher-point func-
N points are concentrated on only a single blob. We call thigions. If the effect of branching is only to renormalize the
blob the mother universe. In the branched polymer, there isnass term, the higher-point correlation functions will be rep-
only one mother universe, and the other univerdgebs  resented by diagrams af® theory with propagators 1€

contain much fewer points than the mother universe. +m?), which is not the correct thermodynamic behavior of
To show this, we first note that the one-point functionthe correlation functions, as we saw in Sec. Ill. Similar to the
(blob) is expanded as case of two-point functions above, we can argue that there is

only one mother universe in which most of tine points

ém:i oy 4.2 reside. Since only a single blob contains infinitely many
Ko &y ToTne : points, we have to divide one of the propagators at the
mother universe, and this propagator behaves ap?1/(
whereu, is given at largen as +m?)2. This mother universe corresponds to the mass inser-
tion. The other blobs contain a finite number of points, and
) n-32%(Q)n-1en the effect of branching can be absorbed into mass renormal-
Up=Gy ”T- (4.3 ization. This is the physical reason why the higher point

correlation functions are represented by tree diagramg®of
By using this expansion and E¢B.22), we obtain the two- field theory with a single mass insertion.
point function for fixedN as The above statement that there is only one mother uni-
verse in the branched polymer is explained differently as
follows. Let us again consider original branched polymer
nzl "'nzl Ung * *Un ONng+---ng | - systems withN points andN—1 bonds. By counting the
0 ° number of ways in which we can divide a branched polymer

(4.4 into two parts by cutting a bond, we obtain a relation

Each contribution in the brackets comes from a graph in

o) [

G(Nz’<p>=§0 f(p)S(

N—1
which the first blob containg, points, the second; points, 2 , ,
and so on. Using Ed4.3), the term in the brackets becomes (N_l)ZN/V_f(O)NZ;l [N"Zn IVIEIN=N)Zn-nry V]
s+1 (4.9

f(o)N—S—leN _ ) ) o
The factor N—1) on the left-hand side is interpreted as the

number of bonds we can cut to divide the whole into two
” S b oam parts. The factorsl” and (N—N'") on the right-hand side are
X 2 e 2 g2 ng ON,ng+ - ng: interpreted as the number of points to which the bond con-

%

Mot ns=1 necting the two parts is attached. Sirigbehaves as in Eq.
(4.5 (3.1)) at largeN,
In the case o6=1, the summation _ Nd-9
- NZy/V=>£(0) > [N'Zy IVII(N=N")Zn_nry I V],
N’ =Ne
21 n~¥(N—n)~—32 (4.6) (4.10
n=

) ] ] which means the summation on the right-hand side of Eq.
is dominated in terms oh~0 andn~N. For the general (4.9 is dominated by terms dfl’~0 or N’ ~N. This for-

case with the exponeni, mula can be interpreted as follows. If we divide any graph
N-1 into two parts by cutting some bond, we find only finite
2 n*(N—n)® (4.7) points in one of them, most of them belonging to the other
n=1 ’ part. The mother universe belongs to the larger part. Con-

sider the two-point function as an example. By dividing the
the sum is dominated at the boundaries torx—1 and graph of Fig. 3 into two parts at some bond, we find that
asymmetry arises between two blobs. Conversely,dfor ~ most points are dominantly distributed in only one of them.
—1, N points are distributed equally, and neither blob is We can apply the same procedure to the dominant part
special. This argument can be generalizedol. To con-  with infinite points. After repeating this several times to di-
clude, mosN points belong to a single blob along the propa-vide the total graph into several pieces, we find that only a
gator. We then have to divide the propagator with lersgiith  single part consists of infinitely many points, and that the
the mother universe. Since the other blobs contain only @thers consist of finite points. We can find out which blob in
finite number of points, the effect of branching, other thanFig. 3 is the mother universe when, after several repetitions,
dividing the propagator into two pieces, is simply to renor-the dominant part with infinite points is detached from the
malize the mass of the propagator. Hence the propagat@ath in Fig. 3. We can also apply the same argument to the
behaves as a product of two ordinary ones with a renormalkigher-point functions. Here we point out the difference of
ized mass: the argument given here from that given for random surfaces
[8]. Although a similar inequality appears for random sur-
faces, the factoN is absent on the left-hand side of inequal-

2
G2 ()~
GN'(P) 52+_m2) : 4.8 ity (4.10 in that case.
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V. CONCLUSION AND DISCUSSION NN

szzl i N, (A3)

In this paper we have shown that correlation functions for
branched polymers are given by functions 6t theory at
tree levelwith a single mass insertigrf we take the ther- From Egs.(3.6), (3.14), and(3.17), b is expanded as
modynamic limit correctly. It is not given by functions for
¢° theory at the tree levels themselves. We have interpreted
the single mass insertion as the presence of a single mother
universe in branched polymers.

We have reviewed random walks in order to clarify the Comparing these two expansions, we obtain the result of Eq.
relation between the canonical and grand canonical en:3.2).
sembles. We have introduced generalized grand canonical
ensembles which assign different weights for different sys- APPENDIX B
tem sizes. We have emphasized that a “good” grand canoni- ] ) ) ] )
cal ensemble is one in which the ensemble average is domj- N this appendix, we derive the two-point correlation
nated by systems of large size. In branched polymers, thi/nction in the canonical ensemble for fixed but lafge
criterion is not satisfied in the conventional grand canonicaPimilar to the calculation in Appendix A, we can obtain the
ensemble. Nevertheless we can consider good grand canofijt0-Point function for a fixedN from Eq. (3.22;
cal ensembles in branched polymers. Our conclusion follows N
the universal icti i G2p)

prediction of good grand canonical ensembles. 1) c@p)=— q Kq
It represents the correct scaling behavior of the correlation t(0) N (P)—Zwi 0 K (N1
functions in canonical ensembles of large system kize

R N
b=F(0) >, vaKy. (A4)
N=1

1 g 1 1-b R
=— b—————b e
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APPENDIX A imaginary direction. We change the variable frdmto t

. . . . .around the saddle point as
In this appendix, we derive the canonical ensemble parti- P

tion function (3.2) from the Schwinger-Dyson equation t2
(3.16. Let us solveb as a form of expansion i&k. Each b—logh=1—- 7 (B2
coefficient is calculated to be

The new parametdris written in terms otb by

1 b
Py K 1-b 7
2’7T| k=0 KN+1 =1 — [ J— — 24 ...
t=i(1-b)| 1+ 3 +36(1 b)-+ (B3)
—1§f db(1-b)e® b Al)  Solving thi btai
o b, (1-b)e W (A1) olving this, we obtain
- 1 1-—itl1 2 13, B4
_N B_ =—It —§It—3—6t+-~- . (B4)
T (A2)
Therefore, in the saddle point approximation, the correlation
Hence function becomes

1 \M*t 1 (= t
i AR) M) — . AN[—(t%2)]
(f(o)> ON (P =5 f_xdtllb—1+H(p)e
eN (e

t2(1—13t%/36+ - - )

:_J dt 2 7. 12 2 pe N2
27) Y TH(p) —2t3+ - P+ [ 1- 13736+ -]

= ? dt e_tz/z, (B5)

_ N‘s’zeNJ“ t2(1—13%/36N+ - - -)
o [H(p)—2t2/3N+ - - 2+ t%N[1— 13%36N+ - - - |2

whereH(p) =1—h(p)~c(ayp)?. Hence the normalized correlation function becomes
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(2)
N (= dt t3(1-13%/36N+ - - -) »
- _J e 12 (B6)
V) w27 [H(p)—2t%/3N+ - - - ]?+t?/N[1—13t%/36N+ - - - ]°
—NF at v “*21+0 1) B7
V) . 2. H(p)2—4t?H(p)/BN+ZN N (B7)
|
The correlation function for branched polymers behaves very
differently from the case of simpler random walks. In the (B10)

regionH(p)<<1, it becomes x|

= dt t2 2
2 —
9¢(p)~ f_m\/— H(p)2+ 2INC 2. (B8  This result for the canonical ensemble is completely consis-
tent with the result of the grand canonical ensenilte.
In the coordinate representation, the two-point correlatiorf3-39].

function behaves as On the other hand, fox|>N the second term in the
exponential in the integration dominates the first term, and
dt t? 2 i gives another power behavior instead of exponential damp-
(2)(X)~J ddpvaJ_p TNe  ORIPOing:
fw dt (21202 1 fdd expip-e)
2 X[ T pt+ XN g@(x)~ (B11)

| |d+2'

1 foc dt 2 Vx|
~—— | —t’exp —=—-——|. (B9
[X|974) 2 p( 2 2N o .
This is due to the contribution of the massless component

In the scaling region %|x|<N¥4 thet integration is esti- (|t|~0). This has no analog in the random walk, where the
mated to be some-independent number: correlation damps exponentially with mass of ortigf.
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